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Compact Finite Difference Schemes with Spectral-like Resolution
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Finite difference schemes providing an improved representation of a
range of scales (spectral-like resolution) in the evaluation of first,
second, and higher order derivatives are presented and compared with
well-known schemes. The schemes may be used on non-uniform
meshes and a variety of boundary conditions may be imposed. Schemes
are also presented for derivatives at mid-cell locations, for accurate
interpolation and for spectral-like filtering. Applications to fluid
mechanics problems are discussed.  © 1992 Academic Press, Inc.

1. INTRODUCTION

Many physical phenomena possess a range of space and
time scales, turbulent fluid flows being a common example.
Direct numerical simulations of these processes require all
the relevant scales to be properly represented in the numeri-
cal model. These requirements have led to the development
of spectral methods [1-2]. Some examples of the direct
simulation of turbulent flows by spectral methods may be
found in [3-5]. The use of spectral methods is, however,
limited to flows in simple domains and simple boundary
conditions. These difficultics may be overcome by em-
ploying alternative numerical representations. For example,
finite difference schemes or spectral (finite) element schemes
may be used. Direct simulations of turbulent flows using
these alternative schemes is relatively new. Rai and Moin
[6, and references therein for earlier work ] present simula-
tions of a turbulent channel flow using a high-order,
upwind-biased finite difference scheme. Work of Patera,
Karniadakis, and their co-workers [7-9] illustrates the use
of spectral element methods.

This paper presents finite difference schemes for use on
problems with a range of spatial scales. Compared to the
traditional finite difference approximations the schemes
presented here provide a better representation of the shorter
length scales. This feature brings them closer to the spectral
methods, while the freedom in choosing the mesh geometry
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and the boundary conditions is maintained. The emphasis
in this paper is on the resolution characteristics of the
difference approximations rather than their formal accuracy
(ie., truncation error). By resolution characteristics we
mean the accuracy with which the difference approximation
represents the exact result over the full range of length scales
that can be realized on a given mesh. This notion of resolu-
tion is quantified by means of a Fourier analysis of the dif-
ferencing scheme. It is analogous to, but more general than,
the notion of intervals per wavelength used by Swartz and
Wendroff [10-13] and by Kreiss and Oliger [14] to com-
pare the resolving power of different schemes. The notion of
intervals per wavelength also uses Fourier analysis to quan-
tify phase errors. For very small phase errors the number of
intervals per wavelength needed by a differencing scheme is
sensitive only to the behavior of the longest waves repre-
sented on a mesh. This is precisely the same information as
obtained from the leading order truncation error (formal
accuracy) of the scheme. It should be stressed that the quan-
titative importance of correctly resolving a particular range
of length scales is dependent on the physical problem being
solved as well as on the nature of results being sought from
the numerical calculation.

The organization of the paper is as follows. Section 2
presents the basic schemes for approximating the first and
second derivatives. Schemes for higher derivatives are
described in Appendix A. Compact schemes on cell-
centered mesh are discussed in Appendix B and the
applications to interpolation and filtering are discussed in
Appendix C. Section 3 presents analysis of the schemes,
showing the associated dispersive errors and the anisotropy
of the schemes in multi-dimensions. Comparisons with
conventional finite difference schemes are made throughout
these sections. This analysis leads to a definition of the
resolving efficiency of the differencing schemes. Comments
are also made on the aliasing errors encountered with
nonlinear problems. Section 4 presents a treatment of
boundaries in the derivative approximations. Assessment of
the local boundary errors is presented. Its effect on the
overall scheme is analyzed by means of numerical tests. An
eigenvalue analysis of the complete scheme and the time-
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stepping restrictions for stability are also described in this
section. General remaks on the application of the schemes
are made in Section 5 and some example applications from
fluid mechanics are presented.

2

2.1. Approximation of First Derivative

Given the values of a function on a set of nodes the finite
difference approximation to the derivative of the function is
expressed as a linear combination of the given function
values. For simplicity consider a uniformly spaced mesh
where the nodes are indexed by i. The independent variable
at the nodes is x;,=h(i—1) for 1 <i< N and the function
values at the nodes f; = f(x,) are given. The finite difference
approximation f] to the first derivative (df/dx)(x,) at the
node i depends on the function values at nodes near i.
For second- and fourth-order central differences the
approximation f; depends on the sets (f;_,, f;,) and
(fio2s fi 15 fiv1s fis2), respectively. In the spectral
methods, however, the value of /] depends on all the nodal
values. The Padé or compact finite difference schemes
[15-19] mimic this global dependence. The schemes
presented here are generalizations of the Padé scheme.

These generalizations are derived by writing approxima-
tions of the form:

ﬁfﬂz‘“"fﬂ]+f;+°‘f;+1+ﬁf;+2

_ fi+3_fi—3 fi+2_fi72 fi+1_fi—1
=c 7 +b m +a 7 .

(2.1)

The relations between the coefficients a, b, ¢ and «, § are
derived by matching the Taylor series coefficients of various
orders. The first unmatched coefficient determines the
formal truncation error of the approximation (2.1). These
constraints are:
a+b+c=1+4+20+28

(second order)  (2.1.1)

3!
a+22b+32c=25 (¢+2°8) (fourth order) (2.1.2)

1
a+24b+34c=2%(a+24ﬂ) (sixth order) (2.1.3)
7!
a+26b+366=2a (x+2%8) (eighthorder) (2.1.4)
9!
a+28b+38c=2§ (x+2%B) (tenth order). (2.1.5)

If the dependent variables are periodic in x, then the
system of relations (2.1) written for each node can be solved

together as a linear system of equations for the unknown
derivative values. This linear system is a cyclic penta-
diagonal (tridiagonal) when B is nonzero (zero). The
general non-periodic case requires additional relations
appropriate for the near boundary nodes. These are
described in Sections 4.1 and 4.2. The resulting linear
system is amenable to efficient numerical solution.

The relation (2.1), along with a mathematically defined
mapping between a non-uniform physical mesh and a
uniform computational mesh, provides derivatives on a
non-uniform mesh. It is also possible to derive relations
analogous to (2.1) for a non-uniform mesh directly (e.g.,
relations corresponding to the traditional Padé scheme were
derived in [19-21]). We now consider the various special
cases of (2.1). In the discussion below at least the first two
of the constraints (2.1.1)—(2.1.5) are imposed. Thus all the
schemes described have at least a fourth-order formal
accuracy.

In Section 3.1 an analysis of the dispersive errors of
schemes (2.1) is presented. This analysis shows the
improved representation of the shorter length scales (ie.,
spectral-like resolution) of the schemes presented here. The
analysis also leads to schemes with very small dispersive
errors (almost spectral). These are also presented in Sec-
tion 3.1. In the present section we proceed in the traditional
way to classify the differencing schemes generated by (2.1)
in terms of the formal truncation error and the computa-
tional stencil required.

The general relation (2.1) with (2.1.1), (2.1.2) can be
regarded as a three-parameter family of fourth-order
schemes. If the schemes are restricted to =0 a variety of
tridiagonal systems are obtained. For § 0 pentadiagonal
schemes are generated. If the additional constraint of sixth-
order formal accuracy is imposed, a two-parameter family
of sixth-order pentadiagonal schemes is obtained. These
may be further specialized into a one-parameter family of
eighth-order pentadiagonal schemes or a single tenth-order
scheme.

First the tridiagonal schemes are described. These are
generated by f=0. If a further choice of c=0 is made, a
one-parameter (a) family of fourth-order tridiagonal
schemes is obtained. For these schemes

B=0, a=%(a+2), b=31@a—1), c=0. (2.1.6)
The truncation error on the rhs. of (2.1) (unless stated
otherwise the term truncation error will be used in this sense
from here on) for this scheme and for other schemes to be
described below are listed in Table I. The stencil sizes
indicated in the table are the maximum stencil sizes needed
within a class of schemes.

As o — 0 this family merges into the well-known fourth-
order central difference scheme. Similarly for a=14 the
classical Padé scheme is recovered. Furthermore, for o =}
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TABLE 1

Truncation Error for the First Derivative Schemes

Max. Lh.s. Max. rhs.
Scheme  stencil size stencil size Truncation error in (2.1)
4
(2.1.6) 3 5 5702-1) RS
4 6(7
(2.1.7) 3 5 — pSf7)
7!
12 6r7
(2.1.8) 3 7 oy (= 8a+3) S
3 =36 5.0
(218)&a=3 3 7 TR
4
(2.19) 5 7 (—1+3a—128+ 10¢) K3
12 60 (T)
(2.1.10) 5 7 =7 (3= 8a+206) h'f
4 64(7)
(2.1.11) 5 5 7—'(9a-4)hf
1
(2.1.12) 5 5 —§§‘h“f‘°’
44
(2.1.13) 5 7 19—‘(205— 1) K
144
(2.1.14) 5 7 — pofun

1!

the leading order truncation error coefficient vanishes and
the scheme is formally sixth-order accurate. Its coefficients
are
a=4%, B=0, a=L4 b=} =0 (217)
The specific tridiagonal schemes obtained fora = and a = §
were given by Collatz [22, p. 538].
With =0 and c¢#0 the family of schemes (2.1.6) is
extended to a two-parameter family of fourth-order
tridiagonal schemes. Contained within these is a one-

parameter family of sixth-order tridiagonal schemes. For
this (sixth-order) family

B=0, a=%(x+9),

(2.1.8)
b=1(320-9),

c=1(=3a+1).

The sixth-order tridiagonal scheme (2.1.7) is a member of
this family (with ¢ =0, & = §). This sixth-order family can be
further specialized into an eighth-order scheme by choosing
a = 3. This is the tridiagonal scheme (§ = 0) with the highest
formal accuracy within (2.1).

Pentadiagonal schemes are generated with 0. In
general this fourth-order three-parameter (a, ff, and c¢)
family is given by

a=%((4+2a—16/3+ S¢), (2.1.9)

b=%(—1+40+228—8c).

Schemes of sixth-order formal accuracy contain two
parameters o and . They are given by

a=L109+a—-208), b=1%(—9+32a+62p8),

(2.1.10)
c=15(1—3a+ 128).
The tridiagonal sixth-order family of (2.1.8) is a subclass
within (2.1.10). Another subclass is obtained with 8 # 0 and
¢ =0. This sixth-order pentadiagonal family has

ﬁzll—Z(_1+3a)’ a=%(8_3a)’

(2.1.11)
b=%(-17+57x), c=0.
This family limits to the sixth-order tridiagonal scheme
(2.1.7) as B — 0 or a = . The leading truncation error coef-
ficient for (2.1.11) vanishes for « = § yielding an eighth-order
scheme. This eighth-order scheme has

— 40

— 25 —
a=%, b=%, =0

B=x%, (2.1.12)
This particular scheme is also given by Collatz [22, p. 538]
and analyzed by Swartz and Wendroff [10-13].

By choosing = % (— 3 + 8a) in (2.1.10) a one-parameter
family of eighth-order pentadiagonal schemes is generated.

This eighth-order family has

B=3(—3+8a), a=¢(12-"Ta),

(2.1.13)
b=l (5680 —183), c=%(%9x—4).
The specific eighth-order schemes obtained earlier viz., (a)
scheme (2.1.8) with a = 2 and (b) scheme (2.1.12), belong to
this one-parameter family.

By choosing a =14 in (2.1.13) a tenth-order scheme is
generated. This is the scheme with the highest formal
accuracy amongst the schemes defined by (2.1). The
coefficients of this scheme are

=1 . —17 __ 101
a=3 Pf=3x, a=1u, b=

c=15.  (2.1.14)

Among the class of derivative approximations repre-
sented by (2.1) those which achieve the highest possible
formal accuracy within each subclass of schemes (denoted
by a specified computational stencil on both the Lh.s. and
r.hs. of (2.1)) are precisely the schemes obtained by a
rational (or Padé) approximation of the first derivative
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operator.! This Padé table is given by Kopal [23]. The
formal rational approximation generates only these specific
members of the multiparameter scheme (2.1.9).

An alternate and more effective way of classifying the
schemes presented here is provided by their Fourier
analysis. The Fourier analysis also quantifies the resolution
characteristics of the schemes. It also provides a way to
“optimize” the scheme from a multi-parameter family.
These issues are fully discussed in Section 3.1.

2.2. Approximation of Second Derivative

The derivation of compact approximations for the second
derivative proceeds exactly analogous to the first derivative.
Once again the starting point is a relation of the form

Bfi stof i  +fi+af i+ B
— fivs=2Li+fi s bf‘i+2—2.fi+fi72
9h? 4h?
_ofaf
poli T Mt iy h{'”’*‘, (22)

where f] represents the finite difference approximation to
the second derivative at node i. The relations between the
coefficients 4, b, ¢ and a, § are derived by matching the
Taylor series coefficients of various orders. The first
unmatched coefficient determines the formal truncation
error of the approximation (2.2). These constraints are:

a+b+c=142a+28 (second order)  (2.2.1)
4!
a+2%h+3%= 7 (x+2°8)  (fourth order) (2.2.2)
6! .
a+2*+3%= i (x+2°B)  (sixth order) (2.2.3)
8!
a+2%+ 3% = o (x+2°8)  (eighth order) (2.2.4)
8 8 10' 8
a+2°h+3 c——(oc+2 f) (tenth order). (2.2.5)

8!

The form of these constraints is very close to those
derived for the first derivative approximations but the mul-
tiplying factors on the r.h.s. are different. In the following
discussion at least the first two of these constraints are
imposed resulting in schemes with at least a fourth-order
formal accuracy. For dependent variables which are

! The author is grateful to Dr. K. Shariff for explicitly verifying this
equivalence (via the use of MACSYMA) and pointing out some errors in
the Padé table of Kopal [23]. The coefficients of % and 86 in the expres-
snons for DY and D (on p. 553) are in error, they should read as 1 and
313, Tespectively.

periodic in x the tridiagonal or pentadiagonal system
defined by (2.2) at each node may be solved to yield the
second derivatives. For the non-periodic case additional
relations are required at the boundary (presented in
Section 4.3).

By choosing =0 and ¢ =0 a one-parameter family of
fourth-order schemes is generated. This family has
p=0, =1(—=1+10a). (226)
The truncation error on the r.h.s. of (2.2) for this and other
schemes discussed in this section are listed in Table II. It
may be noted that as o — 0 this family coincides with the
well-known fourth-order central difference scheme. For
a = {5 the classical Padé scheme is recovered. For a=% a
sixth-order tridiagonal scheme is obtained. This scheme has

—

a=3F, B=0, a=%, b=, c=0. (227)

The particular members obtained with a =15 and a =%
were given by Collatz [22, p. 538].

A three-parameter family of fourth-order schemes is
generated from (2.2) by considering §#0 and ¢ # 0. These
satisfy

=1 (4— 40— 40B + 5¢),
(3( %= 40+ 3c) (2.2.8)

b=1(—1+ 100+ 468 —8¢).

This class of schemes can be further specialized into
a two-parameter family of sixth-order schemes, a one-
parameter family of eighth-order schemes or a single tenth-

TABLE 11

Truncation Error for Second Derivative Schemes

Max. Lh.s. Max. r.hs.
Scheme  stencil size stencil size Truncation error in (2.2)
(2.2.6) 3 5 — (1l —2) hY®
—8-23 Bér®
(22.7) 3 5 ST
—4 4¢(6)
(2.2.8) 5 7 ?(_2+11“—124B+200)hf
(2.29) 5 7 g—'s(9—38a+214ﬂ) HSF®
899a — 334
2.10 7 8£(10)
(22.10) 5 2696400 Kf
619
2.2.11 5 — p!0r12)
( ) ! 299043360 Wy
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order scheme. The two-parameter sixth-order family is
defined by

_6—=92—128 . —3+24a—6f
a= 4 ) b— 5 ’
(2.2.9)
_2—1la+ 1248
- 20 '

When the eighth-order constraint is imposed (2.2.9)
reduces to a one-parameter family of eighth-order schemes.
These are defined by

B_38rx—9 _ 696 —1191a
o4 0 YT am

(22.10)
p_ 254294 11792344
T535 TT 2140

The particular eighth-order scheme with «= % corre-

sponding to ¢=0 in (2.2.10) was given by Collatz [22,
p. 539].

Finally, when the tenth-order constraint is imposed a
single tenth-order scheme is obtained. This scheme defined
by

_ 34
& = %595

i

_ 1065 3 _ 1038 79
a=1iy5, b=

B= 3% %> C=tmg (22.11)
has the highest formal accuracy within the class of schemes
defined by (2.2).

As before amongst the schemes defined by (2.2), those
which maximize the formal accuracy (with a prescribed
computational stencil) correspond precisely to the rational
or Padé approximation of the second derivative operator.
These have been given by Kopal [23, pp. 551-552] in
operator notation. A comparison of schemes (2.2) by means
of Fourier analysis is presented in Section 3.1, where com-
parisons are also made with other well-known schemes.
This analysis brings out the spectral-like resolution of the
schemes described here and also leads to more “optimal”
schemes.

Compact schemes for evaluating higher derivatives are
described in Appendix A. Schemes involving a cell-centered
mesh in evaluating derivatives are described in Appendix B.
Compact schemes for interpolation and filtering are
presented in Appendix C.

3. FOURIER ANALYSIS OF ERRORS

This section presents a Fourier analysis of the errors
associated with the approximations introduced in the last
two sections. Comparison are made with the standard finite-
difference schemes to judge the improvement in the error

characteristics. Formal truncation error of the differencing
schemes were given in the preceding sections. The use of
Fourier analysis to characterize the errors of difference
approximations is described extensively in [24]. It is a
classical technique for comparing differencing schemes. It
was used by Roberts and Weiss [25], Fromm [26], Oliger
and Kreiss [14], Orszag [27-28] and by Swartz and
Wendroff [10-13]. Fourier analysis of the standard Padé
scheme was presented in [ 18] and comparisons were made
with the second- and fourth-order central differences.

The Fourier analysis provides an effective way to quantify
the resolution characteristics of the differencing approxima-
tions. This quantification may be used to further guide an
optimization of the differencing schemes. In the following
section the differencing errors are analyzed in terms of
dispersion or phase error and anisotropy (in multi-
dimensions). Comparisons are made throughout with the
standard difference formulae. Examples of optimization of
the schemes based on the resolution characteristics are also
presented. All differencing approximations (for the interior
nodes) studied here are of central difference form, thus there
are no dissipative errors (from the differencing of conser-
vative terms). The treatment of boundary errors (for non-
periodic problems) is presented in Section 4, where the
approximations appropriate for the near boundary nodes
are also introduced. Local errors introduced by the bound-
ary scheme are discussed along with the schemes and their
effect on the global accuracy is presented in Section 4.4. This
requires direct numerical tests on the performance of the
first derivative schemes. Analysis of the stability properties
of the overall scheme is deferred to Section 4.5 which is
followed by a summary of the time step restrictions for
stable explicit time advancement in Section 4.6.

3.1. Fourier Analysis of Differencing Errors

For the purposes of Fourier analysis the dependent
variables are assumed to be periodic over the domain [0, L]
of the independent variable, i.e., f; = fy, , and h=L/N. The
dependent variables may be decomposed into their Fourier
coefficients

fo= % Jeexp (2”2“), G.11)

k= —N/2

where i=.,/—1. Since the dependent variables are real-
valued, the Fourier coefficients satisfy f,=f*, for 1<
k<N/2 and fo=f% where * denotes the complex
conjugate.

It is convenient to introduce a scaled wavenumber
w = 2nkh/L =2nk/N and a scaled coordinate s= x/h. The
Fourier modes in terms of these are simply exp(iws). The
domain of the scaled wavenumber w is [0, n]. The exact
first derivative of (3.1.1) (with respect to s) generates a func-
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tion with Fourier coefficients [’ = iwf,. The differencing
error of the first derivative scheme may be assessed by com-
paring the Fourier coefficients of the derivative obtained
from the differencing scheme ( f x)s4 With the exact Fourier
coefficients f“ «- For central difference schemes it may be
shown that (f W= iw'f,, where the modified wavenumber
w' is real-valued. Each finite difference scheme corresponds
to a particular function w'(w). Exact differentiation
corresponds to the straight line w’=w. Spectral methods
provide w'=w for w# n (and w' =0 for w=r). The range
of wavenumbers [2n/N,w,] over which the modified
wavenumber w’(w) approximates the exact differentiation
w’(w) = w within a specified error tolerance defines the set of
well-resolved waves. While, the value w/, ie., the shortest
well resolved wave, certainly depends on the specific error
tolerance it is quite reasonable to keep this error tolerance
fixed when different finite difference schemes are compared.
It should also be noted that w,depends only on the scheme
and not on the number of points N used in the descretiza-
tion. In the following the error tolerance is defined as:

[w'(w) —w|
— <5

(3.1.3)

w

The fraction r;=1—w,/n represents the fraction of
poorly resolved waves for the first derivative scheme. This
fraction is also independent of the number of points N. The
fraction e, =w,/n =1 —r, may be regarded as a measure of
the resolving efficiency of a scheme. We note that the com-
putational efficiency of a scheme is proportional to the
resolving efficiency but also depends on the operation count
of the numerical algorithm and its implementation. The
leading order operation count for the spectral-like scheme
described later in this section is 7N multiplies, N divides,
and 7N addition or subtraction operations when sparse
matrix techniques are used [46] and the Cholesky decom-
position of the symmetric portion of the associated matrix is
computed (in LDLT form) and saved for future use. For the
tridiagonal schemes the operation count is 5¥, N, and 5N
for multiply, divide, and add/subtract operations, respec-
tively. For reference, a radix 2 FFT [47] requires 2N log, N
multiplies and 3N log, N adds.

The difference schemes (2.1) correspond to

_asin(w) + (b/2) sin(2w) + (¢/3) sin(3w)
B 1 + 20 cos(w) + 2 cos(2w)

w'(w) (3.1.4)

Plots of the modified wavenumber w’ against wave-
number w are presented in Fig. 1 for a variety of schemes.
In this manner the resolution characteristics of different
schemes can be compared. From this plot the fraction r|,
representing the fraction of poorly resolved waves and the
resolving efficiency e, =1 —r, is determined. This is done

2I 0 2.5 3.0
J.
¥

ModiLfiLed Wavenumber
1.5
Q.

1.0

0.5

0.0

T T 1 U T

T .
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Wovenumber

FIG. 1. Plot of modified wavenumber vs wavenumber for first
derivative approximations: (a) second-order central differences; (b) fourth-
order central differences; (c) sixth-order central differences; (d) standard
Padé scheme (B=0=c, a=1); (e) sixth-order tridiagonal scheme
(B=0=c, a=1); (f) eighth-order tridiagonal scheme (§ =0); (g) eighth-
order pentadiagonal scheme (¢=0); (h) tenth-order pentadiagonal
scheme; (i) spectral-like pentadiagonal scheme (3.1.6); (j) exact differentia-
tion.

for three different values of the error tolerance e, viz.,
e¢=0.1 0.01, and 0.001. The results quantify the resolution
characteristics of the schemes and are tabulated in
Table. III.

It is evident that compared to the standard second- and
fourth-order central differences the compact schemes stay
close to the exact differentiation over a wider range of
wavenumbers. The tridiagonal sixth-order scheme (2.1.7) is
better than the standard Padé scheme. Similarly, the eighth-

TABLE III

Resolving Efficiency e,(¢) of the First Derivative Schemes
Shown in Fig. 1

Scheme e=0.1 £=0.01 £=0.001
(a) 0.25 0.08 0.02
(b) 0.44 0.23 0.13
(c) 0.54 0.35 0.23
(d) 0.59 0.35 0.20
{e) 0.70 0.50 035
) 0.75 0.58 0.44
(8) 0.77 0.61 0.48
(h) 0.81 0.68 0.56
) 0.90 0.83 0.79




22 SANJIVA K. LELE

order schemes (2.1.8) with =3, (2.1.11), and the tenth-
order scheme (2.1.13) stay close to the exact differentiation
over a progressively larger wavenumber range. It may also
be noted that the improvements in the dispersive error for
wavenumber range (7/2, n) are not very sensitive to the
reduction of the formal truncation error of the scheme. Also
shown on Fig. 1 is a “spectral-like” scheme obtained from
(2.1). This scheme has a formal fourth-order accuracy but
considerably better resolution characteristics. For the pur-
poses of constructing “spectral-like” schemes the following
constraints were imposed:

ww)=w,, wiw,)=w,, wi(w;)=w,;. (3.1.5)
The scheme shown in Fig. 1 corresponds to w, =22,
w, = 2.3, and w, =24 Its parameters are

a=0.5771439, f=0.0896406, a=1.3025166,
b=09935500, ¢=0.03750245.
No attempt was made to optimize the choices for w,,
w,, wy. Schemes obtained for other choices of w,, w,, w,

also share the characteristics of scheme (3.1.6).
It is possible to optimize the scheme within a particular

3.0

2.0 2.5
" 1 )
[(e]

Modified HWavenumber
1.5
o

1.0

i

0.5

T T T

T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Wavenumber

FIG. 2. Plot of modified wavenumbers vs wavenumber for first
derivative approximations: (a) fourth-order central differences; (b)
standard Padé scheme (8=0=b=c, a=J); (c) sixth-order tridiagonal
scheme (8 =0=c, a=4}); (d) fourth-order tridiagonal scheme (8 =0=c,
a=); () fourth-order tridiagonal scheme (f=0=c, x= ); (f) fourth-
order tridiagonal scheme (8 =0=c, a = {5); (g) fourth-order tridiagonal
scheme (8 =0 = ¢, a = f}); (h) exact differentiation.

TABLE 1V

Resolving Efficiency e;(¢) of the First Derivative Schemes
Shown in Fig. 2

Scheme e=01 £=0.01 ¢ =0.001
(a) 0.44 0.23 0.13
(b) 0.59 0.35 0.20
(©) 0.70 0.50 0.35
(d) 0.74 0.59 0.52
() 0.79 0.46 024
(f) 0.86 0.39 0.21
(2) 0.61 035 0.20

family of schemes (say defined by a given choice of the com-
putational stencil on the Lh.s. and r.h.s of (2.1)). This is
illustrated in Fig. 2 for the tridiagonal schemes defined by
(2.1.6). Estimates for the fraction of poorly resolved waves
r, and the resolving efficiency e, are tabulated in Table TV.
Evidently, the member with « =3 (fourth-order scheme
(d)) provides a better resolution than the sixth-order
scheme obtained with a = 1 (scheme (c)). We anticipate this
to be a general feature of difference approximations. Other
specific examples which illustrate this behaviour may be
found elsewhere in this paper.

The dispersive error characteristics can be alternatively
presented in terms of the error in the phase speed of waves
of different wavenumber. It may be shown by considering
the semi-discrete (exact time advancement) form of the
advection equation

o o
at+ax——0 (3.1.7)
that the phase speed for a wave of wavenumber w is given
by the finite difference scheme as (c,),, = w'(w)/w. The par-
tial differential equation (3.1.7) has the phase speed one for
all wavenumbers, thus (c,),,—1 is the measure of phase
error.” Figure 3 presents this information for a variety of
finite difference schemes. Once again the improved phase
error of the compact schemes is evident. Again, schemes
with spectral-like resolution can be generated from (2.1) by
not insisting on the highest possible formal accuracy.

In multi-dimensional problems the phase errors of the
differencing schemes also appear in the form of anisotropy

oo r___.1 1Ty h Y
e T oo D o
equation
o o
—~4+==0, 3.1.8
ot ol ( )

2For some of the schemes discussed in this paper the modified
wavenumber w'(w) exceeds w over some intermediate range of wave-
numbers. The phase speeds for this range of wavenumbers exceeds the
exact phase speed and their phase error leads to the exact phase.
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FIG. 3. Plot of phase speed vs wavenumber for first derivative
approximations: (a) second-order central differences; (b) fourth-order
central differences; (c) sixth-order central differences; (d) standard Padeé
scheme (f =0 =5 =, a = }); (¢) sixth-order tridiagonal scheme (8 =0=c,
a=14); (f) eighth-order tridiagonal scheme (8=0); (g) eight-order
pentadiagonal scheme (c=0); (h) tenth-order pentadiagonal scheme;
(i) spectral-like pentadiagonal scheme (3.1.6); (j) exact differentiation.

where /is an arbitrary direction on a two-dimensional grid.
While (3.1.8) has a phase speed of unity for all waves (any
wavenumber and any orientation) the finite difference
schemes generate different phase speeds for waves of
differing wavenumber and orientation. It may be shown
that

cos Ow'{w cos 8) + sin Ow’(w sin §)
(Cp)fd (W, 9) = )

w

(3.1.9)

where 6 is the angle between the propagation direction and
the x axis. This anisotropic propagation is displayed in
Fig. 4 for several finite difference schemes. The curves in this
figure are polar plots of (c,),, at fixed wavenumber w. For
each curve the radial distance at an angle 0 represents (c,, )/,
obtained for waves propagating in that direction. Curves
are plotted for w/n =&, 3, .., &, 2. The outermost curves
(circles) correspond to small w, i.e., well resolved waves. For
these waves the propagation is isotropic and phase speed is
very close to unity. Shorter waves (larger w), usually, have
smaller phase speeds and the propagation is anisotropic
(with least error along +45° angles). The innermost curves
correspond to the shortest waves resolved on the mesh. It
may be seen that in compact schemes the anisotropic error

FIG. 4. Polar plot of phase speed anisotropy for first derivative
approximations; the phase speed for wavenumber (magnitude) w/z =
%, %5, - 3, 39 are plotted: (a) second-order central differences; (b) fourth-
order central differences; (c) standard Padé scheme (B=0=b=c, a=1J);
(d) sixth-order tridiagonal scheme (B=0=c, a=1); (e) spectral-like
pentadiagonal scheme (3.1.6).

is limited to a narrower range of short waves. For the spec-
tral-like scheme the anisotropy is felt only by the shortest
20% of the waves (for any 6).

We remind the reader that the improved resolution
properties of the schemes described here also lead to the
possibility of increased aliasing errors [1, 2, 27, 31, 32]
when solving nonlinear problems. The relative importance
of aliasing errors compared to pure differentiation errors
depends on the nature of the physical problem (e.g., energy
content of high wavenumbers compared to the most
energetic scales), on the type of nonlinearity, (spatial)
dimensionality of the problem, as well as on the specific
numerical algorithms. If all scales are well resolved then the
differentiation error may be expected to be more dominant.
With marginal resolution of the short scales the aliasing
errors may be more significant. Rather than attempting to
analyze this complex issue in detail we remind the reader
that since the differencing schemes presented here are spec-
tral-like their aliasing behaviour may be expected to be akin
to the spectral algorithms. When aliasing errors are
dominant they may be removed either by following the
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algorithms developed for the spectral methods (dealiasing
by the use of FFTs, use of different forms of the conserva-
tion equations) [32-35] for periodic problems or by use of
spectral-like filtering techniques (described in Section 6.2)
for non-periodic cases. An alternative to these is provided in
[6] via the use of a high order upwind biased scheme. More
research is, however, needed to establish the best way of
aliasing control.

The error analysis for the second and higher derivative
approximations proceeds similarly to the analysis for the
first derivative. The exact second derivative of (3.1.1) (with
respect to s) generates a function with Fourier coefficients
‘,’(’ = —wzf‘k‘. The numerical approximations (2.2) corre-
spond to (f),= —w"f,, where

(20(1 —cos(w)) + (b/2)(1 — cos(2w))
+ (2¢/9)(1 — cos(3w)) >
1+ 2a cos(w) + 28 cos(2w)

w"(w) = (3.1.10)

The difference between w”(w) and w? is a measure of error
in the second derivative approximation. Plots of w”(w) vs w
for different finite difference schemes are presented in Fig. 5.
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FI1G. 5. Differencing error for second derivative vs wavenumber:
(a) second-order central differences; (b) fourth-order central differences;
(c) fourth-order central differences; (d) standard Padé scheme
(B=0=b=c, a=17); (e) sixth-order tridiagonal scheme (8=0=c,
a=4); (f) eighth-order tridiagonal scheme (f=0); (g) eighth-order
pentadiagonal scheme (c=0); (h) tenth-order pentadiagonal scheme;
(i) spectral-like pentadiagonal scheme (3.1.12); (j) exact differentiation.

The range of wavenumbers [2n/N, w,] which are well
resolved may be defined by the error tolerance:

[w”(w) —w?|
2 =

w

(3.1.11)

The fraction r,=1—w,/n represents the fraction of
poorly resolved waves for the second derivative scheme.
This fraction is also independent of the number of points N.
The fraction e,=w,/ni=1—r, may be regarded as a
measure of the resolving efficiency of a scheme. These
estimates are tabulated in Table V for the schemes plotted
on Fig. 5. The improvement of the compact schemes over
the explicit central differences is evident. The largest dif-
ferencing error which occurs near w=nx depends only
weakly on the formal accuracy of the scheme. Once again
spectral-like schemes can be constructed via a different
optimization. One such scheme is also displayed in this
figure. This scheme has a fourth-order formal accuracy. Its
coefficients are given by

o =0.50209266, B =0.05569169, a=0.21564935,
b=1.7233220, ¢=0.17659730. (3.1.12)

For the purposes of constructing “spectral-like” schemes the
following constraints were imposed on (2.1.4):

w(w=w,)=wj.

(3.1.13)

Wiw=w)=wl, ww=w,)=wl,

The scheme shown in Fig. 5 was obtained with w, =2,
w,=24, and w;=206. These values of (w,,w,, w;)
represent just one particular example. Schemes obtained for
other choices of (w,, w,, w) shared the same characteristics
as the scheme (3.1.12).

TABLE V

Resolving Efficiency e,(¢) of the Second Derivative Schemes
shown in Fig. §

Scheme £=0.1 £=001 £=0.001
(a) 0.35 0.11 0.03
(b) 0.59 0.31 0.17
{c) 0.70 0.44 0.29
(d) 0.68 0.39 0.22
(e) 0.80 0.55 0.38
(f) 0.86 0.64 048
(8) 0.89 0.66 0.51
(h) 091 0.73 0.59
i) 1.00 0.89 0.84
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4. NON-PERIODIC BOUNDARIES

Many applications involve computations in domains with
non-periodic boundaries. This section introduces approxi-
mations for the first and second derivatives for the near
boundary nodes. These approximations are, of necessity,
non-central or one-sided. In developing these boundary
formulations emphasis has been placed on maintaining a
discrete form of global conservation. Analysis of the local
error inherent in the approximation is included. This is
supplemented by numerical estimates of the global error.
Typically the global error is dominated by the boundary
error.

4.1. Boundary Formulation for the First Derivative

The first derivative at the boundary i = 1 may be obtained
from a relation of the form?

fitofi=p @b bhb i), (L)

coupled to the relations (2.1) written for the interior nodes.
Requiring (4.1.1) to be at least second-order accurate
constrains the coefficients to

the schemes. In the following the same approach is used to
compare different boundary approximations. It should be
noted that this Fourier analysis of the boundary approxi-
mations can be justified only at a heuristic level [29], while
the application of the analysis to the interior differencing is
rigorous (for problems with periodic boundary conditions).

The modified wavenumber w’ (introduced in (3.1))
corresponding to (4.1.1) is in general complex. The real part
of w', indicated by w/, is associated with the dispersive error
(when different from w) and the imaginary part, w/, is
associated with the dissipative error. In Figs. 67 the real
and imaginary parts of w’ are plotted for various boundary
approximations. It may be noted that increasing the formal
accuracy of the explicit approximations (shown by curves
a, b, and c¢) reduces the dissipative error in the low-inter-
mediate wavenumber range, but at the same time degrades
the dispersive error for the intermediate wavenumbers. The
second-order compact scheme (4.1.2) (shown by curve d)
with 2 = 1 and d = 0 discussed by Adam [17] is purely non-
dissipative (i.e., w;=0), its formal truncation error (in
evaluating f7) is 1 the truncation error of the explicit
second-order form, but has a singular w/ at w = n. The third-
order compact scheme (4.1.3) with a=2 (giving d=0)

[

3+a+2d 1—o+6d
a= —2FAF o 243d, = -2 (412)
2 2 2]

r / n/ \ !
-
— e, o o, s < T E—

1142 6— 3 b
a= ;a, b= 2015 go e
_ 5 (4.1.3) %,“’—
e= az— , d= oz, (third order) g £
§
wmd a= D b=l ;-
. ol ’ 414) 3 9
c=3, d= —g. (fourthorder) .
The leading order truncation error (on the r.hs. of ;5
(4.1.1)) for these boundary approximations are given
by ((2—a—6d)/3!) h* ¥ for second-order schemes, by i a
(2(—3)/41) k3f ¥ for third-order schemes and by(6/5!) A%/
for the fourth-order scheme. It may be noted that for the .
even order schemes the leading order truncation error is S : . . . . .
of dispersive type, while for the third-order schemes it is 0.0 0.5 1.0 " 1.5 . 2.0 25 3.0
avenumbper

dissipative.
As discussed in Section 3.1 the Fourier analysis of the dif-
ferencing schemes reveals the resolution characteristics of

3 With this choice the boundary schemes can be used with a tridiagonal
interior scheme without increasing the bandwidth.

FIG. 6. Real part of modified wavenumber for first derivative
boundary schemes: (a) first-order explicit scheme; (b) second-order explicit
scheme; (c) third-order explicit scheme; (d) second-order compact scheme
{a=1, d=0); (e) third-order compact scheme (x =2, d=0); (f} fourth-
order compact scheme («=3); (g) third-order compact scheme (a=>5);
(h) second-order compact scheme (@ =4, d= — }); (i) exact differentiation.
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FIG. 7. Imaginary part of modified wavenumber for first derivative

boundary schemes: (a) first-order explicit scheme; (b) second-order explicit
scheme; (c) third-order explicit scheme; (d) second-order compact scheme
(e=1, d=0); (e) third-order compact scheme (a=2, d=0); (f) fourth-
order compact scheme (a = 3); (g) third-order compact scheme (a = S5);
(h) second-order compact scheme (x =4, d = — }); (i) exact differentiation.

shown by curve e (also discussed in [17]), has quite small
dispersive errors. Its formal truncation error (in evaluating
f1) is § of the third-order explicit form. Its dissipative error
is also confined to high wavenumbers. Other members of
(4.1.3) shown by curves f and g reduce the dissipative error
but also degrade the dispersive error. Also shown on the
plots is a second-order compact scheme with virtually no
dissipative error. This scheme is obtained by adding the
constraint w;(w=mn)=0 to (4.1.2). This constraint requires
that d= — 3, thus reducing (4.1.2) to a one-parameter («)
family. The member with a =4 is plotted (shown as curve
h). It may be noted again that the desired characteristics of
a finite difference scheme are better achieved by directly
optimizing the scheme (in Fourier space) rather than by
seeking the scheme with the lowest possible truncation
error.

It may also be noted that for many of the compact
boundary schemes described here w; has a sign opposite
to that obtained with the explicit one-sided boundary
formulas. For the second-order schemes defined by (4.1.2) it
may be shown that wj(w=mn)=4(2d + 1)/(1 —«). Thus for
the (first), second- and third-order explicit (x = 0) boundary
schemes the values of w;(n) are (2), 4, and £, while for the

compact schemes labelled (e) and (f) the values are —4 and
— %, respectively.

It is erroneous to conclude from this behavior of w!(xn)
that the compact boundary schemes (described above) may
lead to unstable numerical schemes. The stability of the
complete numerical scheme (including the boundary
approximation) must be determined by the appropriate
eigenvalue analysis. In the present instance this eigenvalue
analysis requires a numerical solution. It, however,
establishes that the boundary schemes presented in this
section do in fact lead to stable numerical schemes. Details
of such an eigenvalue analysis are deferred to Section 4.5.
Numerical tests of the global performance of the complete
difference scheme is presented in Section 4.4.

4.2. Conservative Formulation for the First Derivative

In this section an approach is presented for constructing
difference approximations (for the near boundary nodes)
which satisfy a discrete form of global conservation
constraint. Such a treatment is particularly useful in the
discretization of conservation laws. To motivate the discus-
sion consider a conservation law of the form

of OF
5 t5-=0, (4.2.1)
over the domain [a, ] and F = F(f), with some initial and

boundary conditions. Integrating (4.2.1) over the domain
yields

d rx=¢
2 s de=Flacaicg = Flacnmn  (422)

showing that the total f in the domain (i.e., integral of f)
changes (in time) only due to the flux of f at the boundary.
This is a global conservation statement. We seek a formula-
tion for the near boundary nodes such that the global
conservation law (4.2.2) has a discrete analog for the
difference approximations. As a result of this constraint the
difference approximations imply the appropriate quadrature
weights for discretizing the integral on the Lh.s. of (4.2.2).

We consider the system of linear equations (2.1), one
equation for each interior node but not necessarily with the
same coefficients, along with the boundary equation (4.1.1)
(and the analogous equation at the other boundary).
Formally this system may be written as

-~

Af'=-B (4.2.3)

)

1
h

where A, B are N X N sparse matrices and f, f” are N vectors
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representing the values of the function and its derivative at
the nodes, respectively. In order to satisfy the global conser-
vation constraint it is sufficient to require that the columns
2 through N—1 of the matrix B sum exactly to zero.
This ensures that only the boundary nodes contribute to
the boundary fluxes. Given a particular interior scheme
(say with a particular value of o along with any of
(2.1.6)—(2.1.13)) we show that near boundary approxima-
tions of the form (2.1.6)-(2.1.13) and (4.1.1) may be chosen
to satisfy global conservation. This derivation is simpler
when the interior scheme has ¢ =0 and is presented first.
The procedure is easily adapted to interior schemes with
¢ #0. This is summarized subsequently.

For the interior schemes with ¢=0 it is sufficient to
consider the entries in the top left corner of B, viz.,

—wip wygqg wr ws 0 0 0000-...0
—wyg 0 w,g O 0 0 0000 --0
—w3r” —w3q" 0 wyq" wyr” 0 0 000 --- 0

0 ~-F =4 0 g F 0000--0

B= 0 0 —F -4 0 § F 000 ---0
0 0 0 —-Ff —¢g 0 ¢ 700 ---0

0 0 0 0 —FF —¢ 0 70 ---0

0 0 0 0 0 —F —-GO0gF--0

(4.2.4)

In writing the entries of B we have explicitly allowed for
the weights w,, w,, and w. The choice of the schemes at the
near boundary nodes has been restricted. In particular at
node 2, neighboring the boundary node, the standard Padé
form is used, thus ¢’ = 2. The coefficients p, ¢, r, s are given
by (4.1.1) and other coefficients satisfy the constraints
defined by (2.1.6)—(2.1.10) as appropriate. It may be seen
that at least 10 nodes (four interior and three near boundary
nodes from each boundary) are needed for the fluxes to
telescope to the boundary fluxes. By imposing the specific
global conservation restriction it follows that

(4.2.5)

where d and «” are the specific values of the coefficient a of
the schemes used in the interior and at node 3, respectively.
Once specific choices about the family of schemes to be used
in the interior and at node 3 are made, all of the coefficients
appearing in (4.2.4) are determined. In the following we
assume that the schemes used at node 3 and the interior
belong to the same family.

The global conservation requirements lead to

"= , 2.6
¥ T16(@+2)g+8(1—4d)s (4.26)
26+ 1
Wy =G+ 4.2.7)
(8a+7)g—6(26+ 1)r+ (8d+7)s
= , (428
2 9(g +s) (4.28)
4(6+2)g+2(1 —4d)s
= 4.2.
W3 9(q +s) (429)
if the scheme (2.1.6) is used in the interior.
The interior scheme (2.1.11) yields
(42094 — 289)q + (2679¢ — 799) s
"= 421
x (32494 +2271)q + (561 — 18814)s’ (4-210)
=238+ 1) 4211
T 12(g+s) (42.11)
_(33d4+47)q—30(3d + 1)r+ (3364 47)s
Wy = S4q 1) , (4.2.12)
10836 — 757 187 — 6274
=( &—757)g+ (187 627a)s. (42.13)

s 1080(¢ + 5)

Once the weights w,, w,, w;, and o” are determined the
(implied) nodal weights in computing the integral on the
Lh.s. of (4.2.2) become fixed. If a non-uniform mesh defined
by a mathematical mapping x = x(s) (not changing with
time) between a uniformly spaced mesh s and the physical
coordinate x is used, rewriting (4.2.2) as

i szb dx(s)

dt _ ds f(x(s)$ t) ds=Fl(x=a,l=l)_F|(x=b,t=t),

(4.2.14)

shows that the near boundary formulation discussed above
preserves global conservation (with the factor (dx/ds)|, - .
included with the nodal weights for calculating the Lh.s of
(4.2.14)). Such a definition for discretizing the integral
naturally assigns more weight to larger computational cells.

Now we summarize the near boundary formulation for
the interior schemes with ¢ 0. It becomes necessary to
consider a larger number of entries of B, viz.
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Wy p wiq wyr WS 0
—w»q’ 0 w,q’' 0 0
—wyr’  —wyq" 0 wiq"  wir”
—wys” —war” —waq” 0 w,q”
0 —§ —F —§ 0
0 0 —§ —F =g
0 0 0 —§ =7
0 0 0 0 —§
0 0 0 0 0
0 0 0 0 0
L : :
0 0 0 0 0000 -]
0 0 0 0 00 00O
0 0 0 0 0000
war” wus” 0 0 00 00O
g 7 § 0 00 00O
0 g F § 0000
—§ 0 g F 5§ 0 00
—F -4 0 g F § 00
-§ —F -4 0 g4 F § 0
0 —§ —F —¢ 0 ¢ ¥ 5§
: : 3
(4.2.15)

A minimum of 14 nodes (six interior and four at each

The weights w(, w,, w, depend only on the interior scheme
and the scheme at node 1, while the weight w, depends on
the choice made for the scheme at node 3.

4.3. Boundary Formulation for the Second Derivative

The relations appropriate for near boundary nodes
between the nodal values of a function and its second
derivative may be derived by Taylor series expansions. The
compact scheme analogous to (4.1.1) is given by

1
1+ 1117 = (13f, =27, + 15, — f4).  (43.1)

This relation is formally third-order accurate (truncation
error on the r.hs. is #* 5 ). The explicit expressions (at
the boundary node) with second- and third-order formal
accuracy are given by

1
ilzp(2f1_5f2+4f3_f4),

(second order) (43.2)

., 1/35 26 19 14 11
fl =F<“f1"‘3—f2+7f3_?f4+ﬁfs)

(third order). (4.3.3)

Their truncation errors are i A%/ and 2 #*f®). The trun-
cation error of the explicit third-order form is 10 times
larger than that of the third-order compact form.

JUATd. LT BIUUdL COLIDOL YALIULL LULIDLLALLIL LOHULIUD Lilat

(4.2.16)

where ¢ and o™ are the specific values of the coefficient a of
the schemes used in the interior and at node 4, respectively.
The weights may be obtained from

G+ 27+ 3§ $
Wy=—T—", Wis=—7
q+s s
(4.2.17)
Y s (G2 435 ——+ L
w,==F+§— P+ 35§ —_—
2 3 q q+s sm
and
w3rn=q‘+f+§<l—%>,
(4.2.18)

v _g=s)g+38)+(g—25)8
1 qg+s )

Raundarv schemes for other neishboring nodes mavbe

vation considerations (Section 4.2) to the evaluation of the
second derivatives. For these purposes it becomes necessary
to introduce more general compact boundary schemes

Crofie s @AMl (434)

Requiring second-order accuracy restricts the coefficients to

b= —(20+5+4e),
d= —(1 + 4e).

a=a+2+e,
(4.3.5)
c=0+4+ 6e,

The formal truncation error is 5 (¢ + 12e —11) #*f®. By
requiring third-order formal accuracy the coefficients are
reduced to

_ Ma+35

So+ 26 o+ 19
a= [ —

2 7 3 > ‘T
(4.3.6)
_oz—14 11 —«

3 0 T

d

The formal truncation error is reduced to ((a— 10)/12) A%/,
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4.4. Numerical Tests (Including Boundary Scheme)

For problems with periodic boundary conditions the
Fourier analysis presented in Section 3.1 may be used to
assess the global errors. This, however, is not possible with
other forms of boundary conditions. The global errors may
still be assessed by direct numerical tests. Such tests can be
performed at various levels. The simplest of these is to com-
pare the numerically calculated derivative with the known
derivative of various test functions. In order to test the
schemes on functions which contain a range of scales, such
functions were numerically synthesized by taking a sum of
different Fourier modes (representable on the mesh). The
phases of the Fourier modes were chosen randomly
(uniformly distributed over [0, 2n]) and their amplitudes
were chosen to synthesize a prescribed energy spectrum. For
the examples presented here the interval [0,1] was
descretized into 128 intervals (i.e., 129 points when counting
both end points). On this mesh Fourier modes [0, 637 (for
the wavenumber k in (3.1.1)) may be represented. The mode
k =64 (or the 26 wave) is not included. In the examples to
be discussed Fourier modes with k in the range [0, k,, ] were
included. The amplitude of the Fourier modes were equal
and phases were random (white noise). For the numerical
tests the conservative formulation of the first derivative
scheme with « =4, f=0=c (2.1.7) were used. At the end
points the third-order compact boundary scheme with d=10

a
&
o
=
o V4
« 1
"t T T T T )
0.0 0.2 0.4 0.6 0.8 1.0
x
-
° M
| \
o
N T T T T 12
0.0 0.2 0.4 0.8 0.8 1.0
X
{\"—
o
C;_
o
N 3
) T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
x
(\i—
<
o l/\/\/
o
r1\i T T T T ‘4
0.0 0.2 0.4 0.6 0.8 1.0

X

29

was used. This overall scheme was chosen as it has been
used in several practical applications [36-37]. In Figs. 8a-b
numerical tests of this overall scheme are shown for four
classes of test functions (with k,, varying from 9, 21, 31, and
63). One randomly chosen realization of the test functions is
displayed for each class in Fig. 8a. On Fig. 8b the numeri-
cally computed first derivatives (shown with a dashed line)
and the exact derivative of the test functions (shown with a
solid line) are plotted. It may be noted that dominant error
in the derivatives always occurs at the boundary. Only for
cases with k,, of 31 and 63 this localized boundary error is
visible on the plots, and even in these cases the interior is
virtually error-free.

4.5. Eigenvalue Analysis of the Compl